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In this work we compute the thermodynamic properties of the 3-satisfiability

problem in the infinite connectivity limit. In this limit the computation can be

strongly simplified and the thermodynamic properties can be obtained with a

high accuracy. We find evidence for a continuous replica symmetry breaking in

the region of high number of clauses, a> ac.
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1. INTRODUCTION

The statistical mechanics of the random K-satisfiability (K-SAT) problem
has been the object of many studies in the last years. (1–3) The K-SAT was

the first problem to be shown to be Non-deterministic Polynomial (NP)

complete. (4) This model is important because it provides a simple prototype

for all the NP complete problems in complexity theory of computer science

as well as in statistical mechanics of disordered and glassy systems, in

computational biology and in other fields.

It is usually believed that the solutions of NP complete problems, or

the certainty that they have no solutions, can only be found, in the worst

case, by algorithms with a running time of computation that grows faster

than polynomially (namely exponentially) with the number of variables N
of the system.



Generally speaking, in the statistical mechanics approach, for each

given instance of the problem, one introduces a Hamiltonian H(C), con-
structed in such a way that the configuration C*, which minimizeH(C), is
the solution of the problem ifH(C*)=0. On the contrary, ifH(C) > 0 for
any C, the problem does not have a solution. In this framework one con-

sider for each problem the partition function

Z(b)=C
C
exp(−bH(C)), (1)

where b=T−1, T being the temperature of the system. In the same way one
introduces the usual thermodynamic quantities, e.g. the internal energy

E(b)=−
“ ln(Z(b))
“b

(2)

It can be argued that quantities like the internal energy density (i.e.

E — E/N) do not depend on N in the infinite N limit, so that a computa-

tion of their average over the different instances of the problem is sufficient

for obtain interesting information in this limit.

When one studies the behaviour of the K-SAT model at finite tem-

perature, one finds a rich structure of phase transitions. (1) In certain region

of the parameter space, replica symmetry is broken (in other words there

are many equilibrium states in the large volume limit) (5). Explicit computa-

tion shows that it may be possible to obtain a basic understanding of the

connection between the SAT/UNSAT phase transition in random combi-

natorial structures (1, 2) and the transition between a Replica Symmetric (RS)

structure and a structure where the replica symmetry is broken in the frame

of spin-glasses. (5) Recent results (6) suggest that the SAT/UNSAT transition

seems to take place into the phase of broken replica symmetry. Yet the

question stays open of how exactly the typical-case complexity theory of

computer science and the Replica Symmetry Breaking (RSB) transition are

related.

One of the main aim of the recent research on this model has been to

understand better the structure of solutions, especially at the borderline

between the region of the phase diagram where the problem has solution

and the region where no solution is possible. Indeed this is the zone where

the most unlikely (hardest) solutions are.

We will concentrate our attention on the case K=3 (3-SAT), that is
known to be the first and simplest NP complete instance of K-SAT. The

2-SAT model is, in fact, already solvable in a time increasing polynomially

(actually even linearly) (7) with the number of variables.
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The basic boolean variables of the problem, s(i), are defined on the
sites i with i=1, ..., N. For technical reasons we prefer to use variables s(i)
which take the values ±1. Our problem is then related to the original one
through the variables transformation s(i)=(1+s(i))/2.

We consider an ensemble of randomly generated 3-SAT formulae. The

Hamiltonian corresponding to a given formula is

H= C
i1 < i2 < i3

ri1, i2, i3
1−E (i1, i2, i3)

1 s(i1)
2

1−E (i1, i2, i3)
2 s(i2)

2
1−E (i1, i2, i3)

3 s(i3)
2

. (3)

For each instance of the problem we generate aN clauses, where each

clause is determined by randomly selecting three of the N sites and assign-

ing to them a random ±1 variable. The terns of randomly chosen sites
{i1, i2, i3} are given by the variables ri1, i2, i3 that take the value 1 with pro-
bability p — aN−2 and the value 0 with probability 1−p. For finite N there

are approximately aN variables r which are different from zero and they

become exactly equal to aN in the limit NQ.. Given a tern {i1, i2, i3}, a
set of three variables E are drawn, taking the value +1 or −1 with proba-
bility 1/2. The function (3) depends only on those variables E (i1, i2, i3) such
that ri1, i2, i3=1 and all the terms are non-negative: H just counts the

number of clauses that are not satisfied. Obviously H=0 if and only if all
the clauses are satisfied.

As we have already explained we are going to consider H as the

Hamiltonian of a disordered system, in order to apply to the K-SAT model

the statistical mechanics techniques and to compute all the mathematical

expressions in this framework. We will introduce the fictive temperature

T — 1/b and at the end we will then send bQ. to compute the ground

state properties.

In the large N limit we can write the equivalent Hamiltonian, in which

the number of terms in the interaction is fixed and equal to aN, as:

H= C
l=1, aN

1−E (l)1 s(i
(l)
1 )

2
1−E (l)2 s(i

(l)
2 )

2
1−E (l)3 s(i

(l)
3 )

2
(4)

where the sites i (j)t (t=1, 2, 3) are randomly chosen for each one of the aN
triplets.

For reasons that are discussed in refs. 1 and 2, one is interested to

study the statistical properties of the system in the thermodynamic limit

NQ.. It is interesting to consider the zero temperature energy density
E0(a) (i.e. the average over the distribution of clauses of the number of
clauses that are not satisfied by the formula corresponding to the Hamil-

tonian in equation (3)) as a function of the ratio a between the number of
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clauses and the number of variables. We are eventually interested in the

zero temperature entropy density S0(a). The number of solutions satisfying
the formula is asymptotically given by exp(NS0(a)). It has been

conjectured (1) that

E0(a)=0, S0(a) > 0, for a< ac,

S0(a)=0, E0(a) > 0, for a> ac,
(5)

where the value of ac is estimated to be around 4.2.
(3)

Below ac we have solutions (with probability going to 1 for N going to

infinity), while above ac the problem does not have solutions (i.e. it is

UNSAT). At a° ac the problem is quite underconstrained and it is rela-

tively easy to find an assignment of variables {si} satisfying the clauses.
For a± ac, though in general still hard, to prove unsatisfiability is easier

than in the hardest cases near ac. Around the density of clauses ac it is

indeed very difficult either to find a satisfying assignment or to show unsa-

tisfiability, i.e. it is most difficult to discriminate whether the problem

admit any solution or no solution at all. These are the cases where an

exponential time may be needed.

Far from this critical value, anyway, things simplify and more insight

over the structure of the phase space can be gained.

Indeed the exact evaluation of the free energy in the a-b plane is a

rather complex computation. The aim of the present work is then to show

that the computation strongly simplifies in the most overconstrained limit

of aQ.. Let us first introduce the reduced inverse temperature m through
the relation

b —
m

`a
. (6)

and let us define the rescaled energy density

e(m, a) —
1

`a 1
E(b, a)−

a

82 , (7)

A similar definition can be written for the other thermodynamic functions.

In particular for the free energy we have the rescaled quantity f(m, a)=
(F(b, a)−a/8)/`a. We shall also introduce the reduced temperature

y=m−1=Ta1/2. We will show below that the function e(m, a) has a limit
when a goes to infinity. We can thus define

e(m)=lim
aQ.

e(m, a). (8)
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In the following we will also compute the function e(m) with high accuracy.
In the conclusions we will implicitly assume that the limit aQ. of full con-
nectivity and the zero temperature (mQ.) limit can be freely exchanged.

The interest for this computation is threefold:

• The limit where a goes to infinity plays the same role of the infinite

connectivity model for spin glasses (finite connectivity/dilute models

correspond to finite a) and most of our analytic understanding comes from

the study of the infinite range models (Sherrington–Kirkpatrick like

models) (8), where the analytic computations are much simpler.

• Replica symmetry is broken in a region of the a-b plane, for

a> ac 4 4.2 (3) (or maybe for a> as 4 3.9 as recently derived in ref. 6 by
means of a variational approach). It is reasonable to assume that in this

whole region the way in which replica symmetry is broken is the same as in

the limit aQ..

• If we neglect the dependence of e0(a) — limmQ. e(m, a) on a for
a \ ac (i.e. if we perform an asymptotic expansion in 1/`a and we consi-
der only the leading order), we get the following estimate for ac:

ac % (8e0)2. (9)

Where the estimate ac depends from the order of the asymptotic expansion.

In this work we will limit ourselves to the leading order in the m−1 expan-

sion. The precise value of e0 will be given in the next section where we
derive the thermodynamic observables using the replica tool.

2. THE REPLICA FORMALISM

In the replica formalism one computes

Z (n) — Z[{D}]n, (10)

where {D} denotes the random couplings, the bar is the average over the

distribution of the random couplings and the partition function is defined

as:

Z[{D}]=C
{si}
exp(−bH[{si}, {D}]). (11)

In our case D represents the ensemble of random clauses, namely the

ensemble of terns {i1, i2, i3} with associated E’s. The free energy density at
finite n is defined as

F (n)=− lim
NQ.

ln(Z (n))
bnN

. (12)
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where we firstly perform the thermodynamic limit keeping n fixed and only
afterwards we send nQ0 by an analytic continuation procedure.

We are eventually interested in computing the limit nQ0 of F (n), which

is the value of the free energy density of the generic system in the infinite

volume limit:

F=lim
nQ0

F (n)=− lim
NQ.

ln Z[{D}]
bN

. (13)

Starting from (3) and carrying out the average over the distribution of

the r’s we have

Z (n)=C
{si

a}
D

i1, i2, i3
11−p+p exp 1−b C

a=1, n
D

j=1, 3

1−E (i1, i2, i3)j sa(ij)
2 22. (14)

where here the (...) is now the average only over the E’s distribution. In the
limit of large N we can write the previous expression in terms of the effec-

tive HamiltonianHeff and the temperature like parameter a:

Z (n)=C
{si

a}
exp(−aHeff ), (15)

where

Heff —
1
N2 C

i1 < i2 < i3

heff(s(i1), s(i2), s(i3) |b) (16)

and

heff — 1−exp 1−b C
a=1, n

D
j=1, 3

1−E (i1, i2, i3)j sa(ij)
2 2 . (17)

For a given tern of sites {i1, i2, i3} the average is performed over the 23

possible values of the three variables E.

Let us now consider the limit aQ. at fixed m. The computation is

long but straightforward. In this limit the inverse temperature b, defined as
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in (6), becomes a quantity of order a−1/2 so that we can freely expand the

exponential in the previous expression (16):

Heff=
1
N2 C

i1 < i2 < i3
1
m

`a
C

a=1, n
D

j=1, 3

1−E (i1, i2, i3)j sa(ij)
2

+
m2

2a 1 Ca=1, n
D

j=1, 3

1−E (i1, i2, i3)j sa(ij)
2 2

2

+O 1
m3

a3/222 , (18)

where

C
a=1, n

D
j=1, 3

1−E (i1, i2, i3)j sa(ij)
2

=
n
8
, (19)

1 Ca=1, n
D

j=1, 3

1−E (i1, i2, i3)j sa(ij)
2 2

2

=
1
8
C
a, b

D
j=1, 3

1+sa
ijs

b
ij

2

=
n
8
+

1
32

C
a < b

D
j=1, 3

(1+sa
ijs

b
ij) (20)

Using standard manipulations, for large N and a, we easily get

Z (n)=exp 1−
Nnm`a

8
+
Nnm2

16 2

×C
{si

a}
exp 1

Nm2

64
C

a < b 1
1+

1
N

C
i
sa

is
b
i2

3

2 (21)

=exp 1−
Nnm`a

8
+
Nnm2

16 2

×C
{si

a}
F D

1, n

a < b
dQabd 1Ci

sa
is

b
i−NQab2 exp 1

Nm2

64
C

a < b
(1+Qab)32

— F D
1, n

a < b
dLab D

1, n

a < b
dQab exp(NnA[{Q}, {L}]), (22)

where

A[{Q}, {L}]=−
m`a

8
+
m2

16
+
m2

64n
C

a < b
(1+Qab)3

−
1
n

C
a < b
LabQab+

1
n
log 1C{sia}

exp 1 Ca < b
Labsasb22 . (23)
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In the infinite N limit we can use the saddle point method and we find

that the free energy density is given by

F(a)=−
`a

m
A[{Q sp}, {L sp}] (24)

and the expression of the internal energy comes out to be:

E(m, a)=
a

8
−
m`a

8 1
1+

1
4n

C
a < b

(1+Qab)32 . (25)

The elements {Q sp} and {L sp} satisfy the following consistency

equations:

L sp
ab=

3m2

64
(1+Q sp

ab)
2, Q sp

ab=
;{sa} sasb exp{;a < b sasbL

ab}
;{sa} exp{;a < b L

absasb}
. (26)

Our task is now to find the solution of these equations.

We notice that equation (25) implies that the exact definition of e0 in
(9) is

lim
mQ.

−
m

8 51+
1
4n

C
a < b

(1+Qab)36 (27)

3. THE REPLICA SYMMETRIC SOLUTION

The simplest possibility (which is correct at high temperature) consists

in assuming that the off-diagonal elements of the matrix Q and L are con-

stant and they are equal to q0 and l0 respectively. A simple computation

shows that

A(q0, l0)=−
m`(a)

8
+
m2

16
−
m2

128
(1+q0)3−

l0(1−q0)
2

+F dp(z0) log(2 cosh z0 `l0) (28)

and the final form of the rescaled free energy, as defined in (7), is given by

f(m, a)=−
m

16 51−
(1+q0)2 (2−q0)

4 6+
1
m
F dp(z0) log(2 cosh z0 `l0), (29)

686 Leuzzi and Parisi



where the parameters q0 and l0 satisfy the equations:

l0=
3
64
m2(1+q0)2, q0=F dp(z0)(tanh(z`l0 ))2, (30)

and we have used the following compact measure for the Gaussian

measure:

dp(z) —
e−z2/2

`2p
dz. (31)

The solution of the equation (30) can be found by iterations. The

parameter q0 is an analytic function of y (Fig. 3, full curve). No transition
is present. The zero temperature value of the rescaled energy (7) is given by

e0=`
3
8p % 0.345494.

The corresponding value of a where the energy density E(m, a) goes to
zero, i.e. the ratio of the number of variables and the number of clauses up

to which all clauses are satisfied, turns out to be, following (9), ac=24/p=
7.6394373 in this asymptotic approximation.

The value of the entropy corresponding to this solution is shown in

Fig. 1. It becomes negative at low temperature signaling an inconsistency of

the approach based on replica symmetry. In order to obtain reasonable

results in the low temperature region we must break the replica symmetry

as we will show in the next section.

4. THE REPLICA SYMMETRY BREAKING

4.1. One Step Replica Symmetry Breaking

If replica symmetry is broken, very often reasonable results are ob-

tained in the framework of the one step replica symmetry breaking, where

it is assumed that the elements of the matrix Q take only two values (for

the physical interpretation of one step replica symmetry breaking see

reference.) (5).

In the one step case one divides the indices a in n/m groups, each

group having m components. We set Qa, b equal to q1 if a and b belong to
the same group, otherwise we set Qa, b equal to q0. Similar relations are
used for the matrix L. The free energy is now a function of three indepen-

dent parameters: m, q0 and q1. The limit nQ0 is obtained in this case by
doing an analytic continuation also in m, that in such a process will not be
integer anymore. In the 0 replicae limit m acquires non-integer values

between 0 and 1.
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After some simple computation we get

A(q0, q1; l0, l1, m)

=−
m`a

8
+
m2

16
−
m2

128
[m(1+q0)3+(1−m)(1+q1)3]

−
l1

2
+
1
2
[ml0q0+(1−m) l1q1]

+
1
m

F dp(z0) log 1F dp(z1)(2 cosh(z0 `l0+z1 `l1−l0))m2 , (32)

f(m)=−
m

16 51−
m
8
((1+q0)2 (1−2q0)−(1+q1)2 (1−2q1))

−
(1+q1)2 (2−q1)

4 6
−

1
mm

F dp(z0) log F dp(z1)(2 cosh(z0 `l0+z1 `l1−l0))m, (33)

where the following equations are satisfied:

li=
3
64
m2(1+qi)2, i=0, 1 (34)

q0= F dp(z0) 1
1

> dp(z1)(cosh(z0 `l0+z1 `l1−l0))m

×F dp(z1) tanh(z0 `l0+z1 `l1−l0)(cosh(z0 `l0+z1 `l1−l0))m)2

(35)

q1=F dp(z0)
1

> dp(z1)(cosh(z0 `l0+z1 `l1−l0))m

× F dp(z1)(tanh(z0 `l0+z1 `l1−l0))2 (cosh(z0 `l0+z1 `l1−l0))m

(36)

and the parameter m is chosen in such a way to minimize the resulting free
energy.

One finds that for m> mc=4.55 the previous equations have a non
trivial solution (e.g. m ] 0, q1 ] q0). The corresponding values of m, q0 and

q1 are shown in Figs. 3 and 4. It is evident that the value of m is different

from the one at critical temperature and that the difference q1−q0 vanishes
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Fig. 1. Entropy as function of the reduced temperature y in the replica symmetric case and

in the broken symmetry case with one and two steps breaking.

at mc. This behaviour is similar to the one that is realized in the Sherrington–

Kirkpatrick (SK) model in non-zero magnetic field.

In Figs. 1 and 2 we plot the entropy as function of the temperature.

Also in this case the entropy becomes negative at sufficiently small tem-

perature, but this happens in a rather smaller region above y=0.
In the SK model for spin glasses, where this disaster happens at one

step level, (we recall that the entropy cannot be negative), the correct value

Fig. 2. Detail of the cases with broken replica symmetry, shown in Fig. 1, at low temperature.
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Fig. 3. Values of q0 as function of the temperature y in the replica symmetric case (full
curve), of q0 and q1 in the broken symmetry case with one step breaking (dashed curves) and
those of q0, q1 and q2 in the two step replica symmetry breaking case (dotted curves).

of the entropy is proportional to y2. If a similar behaviour is present in this

model the free energy should be given by A+By3 at small, but not too
small y. We show in Figs. 5 and 6 the free energy as function of y3. We see

that in a wide range of y3 a linear behaviour is present supporting a

quadratic dependence of the entropy on the the temperature. The extra-

polated value of the zero temperature rescaled free energy obtained using

Fig. 4. Parameters m’s as function of y for one step (full curve) and two steps (dashed
curves) replica symmetry breaking.
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Fig. 5. Rescaled free energy versus the cube of the reduced temperature y3 in the replica

symmetric case and in the broken symmetry cases with one and two steps breaking.

this method (f (1)
ext=A=−0.333412) is slightly larger than the actual value at

zero temperature (f1RSB(T=0)=−0.333740), however this first value
should be more reliable, because it is known that the errors in the free

energy, if one makes the approximation of considering only a finite number

of RSB steps, are negligible at higher temperature, but they become larger

at low temperature. f (1)
ext gives an estimate (9) equal to ac 4 7.114468.

Fig. 6. Detail of Fig. 5 showing the one and two step symmetry breaking cases at low y.
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4.2. Two Steps Replica Symmetry Breaking

In we perform another step in breaking the replica symmetry and we

let the elements of Q and L take three different values (q0, q1 and q2 and l0,
l1 and l2 respectively) the free energy will be a function of the five inde-

pendent variables: q0, q1, q2, m1, m2. In this case we have:

A(q0, q1, q2; l0(q0), l1(q1), l2(q2))=−
m`a

8
+
m2

16

−
m2

128
[m1(1+q0)3+(m2−m1)(1+q1)3+(1−m2)(1+q2)3]

−
l2

2
+
1
2
[m1l0q0+(m2−m1) l1q1+(1−m2) l2q2]

+
1
m1

F dp(z0) log 1F dp(z1)

×5F dp(z2)(2 cosh(z0 `l0+z1 `l1−l0+z2 `l2−l1))m2

6
m1

m2

2 , (37)

f(m)=−
m

16 51−
1
8
(m1((1+q0)2 (1−2q0)−(1+q1)2 (1−2q1))

+m2((1+q1)2 (1−2q1)−(1+q2)2 (1−2q2)))−
(1+q2)2 (2−q2)

4 6

−
1

m1m
F dp(z0) log 1F dp(z1)

×5F dp(z2)(2 cosh(z0 `l0+z1 `l1−l0+z2 `l2−l1))m2

6
m1

m2

2 , (38)

where the self consistency equations are:

li=
3
64
m2(1+qi)2, i=0, 1, 2 (39)
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q0=F dp(z0)1
1

> dp(z1)[> dp(z2)(cosh(z0`l0+z1`l1−l0+z2`l2−l1))m2]
m1

m2

×F dp(z1) 5F dp(z2)(cosh(z0 `l0+z1 `l1−l0+z2 `l2−l1))m2

6
m1

m2
−1

×F dp(z2) tanh(z0 `l0+z1 `l1−l0+z2 `l2−l1)

×(cosh(z0 `l0+z1 `l1−l0+z2 `l2−l1))m2

2
2

(40)

q1=F dp(z0)1
1

> dp(z1)[> dp(z2)(cosh(z0`l0+z1`l1−l0+z2`l2−l1))m2]
m1

m2

×F dp(z1) 5F dp(z2)(cosh(z0 `l0+z1 `l1−l0+z2 `l2−l1))m2

6
m1

m2
−2

×5F dp(z2)(cosh(z0 `l0+z1 `l1−l0+z2 `l2−l1))m2

×tanh(z0 `l0+z1 `l1−l0+z2 `l2−l1)6
2

2 (41)

q2=F dp(z0)1
1

> dp(z1)[> dp(z2)(cosh(z0`l0+z1`l1−l0+z2`l2−l1))m2]
m1

m2

×F dp(z1) 5F dp(z2)(cosh(z0 `l0+z2 `l1−l0+z1 `l2−l1))m2

6
m1

m2
−1

×F dp(z2)(cosh(z0 `l0+z1 `l1−l0+z2 `l2−l1))m2

×tanh(z0 `l0+z1 `l1−l0+z2 `l2−l1))22 (42)

From Figs. 3 and 4 we see that the transition between the replica

symmetric structure and the broken one at yc=1/mc=0.21978 is confirmed.
In the two step computation the entropy (Fig. 2) still becomes negative but

at a lower temperature than in the one step case and the zero temperature

value is less negative than before. Even the y2 behaviour for small y, or the

equivalent A+By3 law for the free energy, is satisfied up to a smaller tem-
perature. The extrapolated value of the zero temperature free energy is now

f (2)
ext=A=−0.333401, where the value given by the actual 2RSB free energy
is f2RSB=−0.333450. Their difference is of an order of magnitude smaller
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than in the one step replica symmetry breaking case (we recall that in that

case f (1)
ext=−0.333412 and f1RSB(T=0)=−0.333740).

The pathologies here exhibited clearly show that the one step and the

two steps solutions are still not exact, and it is natural to suppose that they

will disappear when we break the replica symmetry in a continuous way. (5)

Using equation (9) once again, we find ac % 7.1139985. This value is
not too far from the estimated result (i.e. 4.2) (3) if we consider how crude is

our approximation.

5. CONCLUSIONS

We have seen that the transition from the replica symmetric case to

the replica broken case is a smooth transition, which is quite different from

the quasi first order transition of the p-spin model. (9) This difference is
likely due to the fact that the self overlap q0 is different from zero in the

high temperature phase.

The one step approximation is not exact at low temperature and it is

likely not to be exact in the whole replica symmetry broken phase. The two

step replica symmetry breaking computation gives clear hints that the

replica symmetry must be broken in a continuous way. In any case both

approximations apparently give excellent approximations for the free

energy at low temperature (the error on the value of the zero temperature

free energy is O(10−4) at one step and O(10−5) at two steps RSB level
respectively).

The model has a behaviour that is very similar to the one of the

Sherrington–Kirkpatrick model in presence of a magnetic field. It is natural

to conjecture that these properties hold in a quite large interval of values of

a, for a \ ac, even far from the full connectivity limit aQ.. It would be
very interesting to check these predictions using numerical simulations

and/or analytic tools.
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